首页> 外文OA文献 >Stack and Queue Layouts via Layered Separators
【2h】

Stack and Queue Layouts via Layered Separators

机译:通过分层分隔符进行堆栈和队列布局

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is known that every proper minor-closed class of graphs has bounded stack-number (a.k.a. book thickness and page number). While this includes notable graph families such as planar graphs and graphs of bounded genus, many other graph families are not closed under taking minors. For fixed g and k, we show that every n-vertex graph that can be embedded on a surface of genus g with at most k crossings per edge has stack-number O(logn); this includes k-planar graphs. The previously best known bound for the stack-number of these families was O(√n), except in the case of 1-planar graphs. Analogous results are proved for map graphs that can be embedded on a surface of fixed genus. None of these families is closed under taking minors. The main ingredient in the proof of these results is a construction proving that n-vertex graphs that admit constant layered separators have O(logn) stack-number.
机译:众所周知,图的每个适当的次要闭合类都有边界堆栈数(也就是书的厚度和页数)。尽管这包括显着的图族,例如平面图和有界属图,但许多其他图族在未成年者下并没有关闭。对于固定的g和k,我们证明了可以嵌入到g类曲面上的每个边缘最多具有k个交叉点的n个顶点图具有堆栈数O(logn);这包括k平面图。除一平面图的情况外,这些族的堆叠数的先前已​​知边界为O(√n)。对于可以嵌入到固定属表面上的地图图,证明了类似的结果。这些家庭中没有一个在接纳未成年人的情况下被关闭。这些结果证明的主要成分是一个构造,证明允许恒定分层分隔符的n个顶点图具有O(logn)堆栈数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号